Powłoki niklowe bezprądowe — technologia, która daje przewagę

30 czerwca 2025

W wielu zastosowaniach przemysłowych odporność na korozję i zużycie to kluczowe wymagania stawiane częściom maszyn i narzędziom. Jedną z technologii, która zdobyła ogromną popularność w wielu branżach — od lotnictwa po produkcję form wtryskowych — są powłoki niklowe bezprądowe (ang. Electroless Nickel Plating, ENP).



W odróżnieniu od tradycyjnego galwanicznego niklowania, tutaj nie potrzebujemy prądu. Proces zachodzi dzięki reakcjom chemicznym — i właśnie dzięki temu daje szereg unikalnych zalet.


Na czym polega niklowanie bezprądowe?


Powłoka niklowa bezprądowa powstaje w wyniku redukcji jonów niklu (Ni²⁺) na powierzchni obrabianego detalu przy udziale reduktora, najczęściej podfosforynu sodu (NaH₂PO₂).

Reakcja przebiega w kąpieli chemicznej w odpowiedniej temperaturze (zwykle 80–95°C) i pH, bez konieczności przykładania napięcia.


Podstawowa reakcja:

Ni²⁺ + H₂PO₂⁻ + H₂O → Ni + H₂PO₃⁻ + H₂

W wyniku reakcji na powierzchni detalu powstaje jednorodna warstwa niklu z domieszką fosforu.


Zalety powłok niklowych bezprądowych.


✅ Brak efektu krawędziowego — warstwa ma równą grubość nawet na skomplikowanych kształtach, w głębokich otworach, rowkach czy kanałach.
✅ Bardzo dobra odporność na korozję (szczególnie w wersjach wysokofosforowych).
✅ Wysoka twardość — nawet do 550 ± 50 HV bez obróbki cieplnej, a po starzeniu cieplnym nawet do 1000HV.
✅ Odporność na zużycie i tarcie — bardzo korzystna w formach wtryskowych, tłocznikach, zaworach, komponentach hydraulicznych.


Rodzaje powłok w zależności od zawartości fosforu:


   Typ                                  Zawartość P (%)                                                                       

Nisko fosforowe                                  2-5     


Właściwości:                                                      Twarde, odporne na ścieranie, mniejsza odporność na korozję.

 

   Typ                                  Zawartość P (%)   

   

Średnio fosforowe                              6-9         


Właściwości:                                                        Kompromis pomiędzy właściwościami mechanicznymi,  a korozyjnymi.

 

  Typ                                  Zawartość P (%)


Wysoko fosforowe                              10-13                                                                      Właściwości:

Najlepsza odporność na korozję, nieco mniejsza twardość.

 

 


Gdzie stosujemy powłoki ENP?


✅ przemysł lotniczy i kosmiczny
✅ przemysł naftowy i gazowy (rury, zawory, narzędzia wiertnicze)
✅ formy wtryskowe i tłoczniki
✅ hydraulika siłowa (tłoczyska, zawory, elementy precyzyjne)
✅ elektronika
✅ przemysł motoryzacyjny (wały, elementy zawieszenia, łożyska ślizgowe)


Porównanie do powłok chromowanych


W porównaniu do klasycznego chromowania galwanicznego, niklowanie bezprądowe (ENP) ma kilka istotnych przewag. Po pierwsze: pozwala uzyskać równomierną grubość powłoki nawet na skomplikowanych kształtach, gdzie chromowanie ma problem z równomiernością. Po drugie: powłoki ENP wykazują bardzo dobrą odporność na korozję, szczególnie w wersjach wysokofosforowych.


Co równie ważne — ENP jest znacznie bezpieczniejsze ekologicznie. Klasyczne chromowanie wykorzystuje związki chromu sześciowartościowego (Cr⁶⁺), które są silnie toksyczne, rakotwórcze i podlegają ścisłym regulacjom środowiskowym (REACH, RoHS).


Rysunek: „Inżynieria powierzchni” Marek Blicharski

 

2 lutego 2026
Niemiecke koleje Deutsche Bahn osiągnęły poziom 100 000 części zamiennych drukowanych w technologii 3D! Konwencjonalne zaopatrzenie w części zamienne wiąże się z długim czasem dostawy, wynoszącym średnio 10 miesięcy – z wykorzystaniem drukowanej formy piaskowej, stworzonej metodą strumieniowego odlewania spoiwem, proces produkcji można było znacznie przyspieszyć. Dzięki temu komponent może być dostępny w ciągu 2 miesięcy. Inna zaleta pośredniego drukowania 3D z szybkim odlewaniem: dzięki tej procedurze komponent pozostaje w swoim pierwotnym trybie produkcji, ponieważ drukowana jest tylko forma dla odlewanego komponentu.
19 grudnia 2025
Najważniejsze kierunki rozwoju technologii przyrostowych W listopadzie mieliśmy przyjemność uczestniczyć w kolejnej edycji Formnext , największych na świecie targów, poświęconych technologiom addytywnym i cyfrowej produkcji. Frankfurt ponownie stał się miejscem premier, innowacji oraz spotkań firm, które realnie wyznaczają kierunek rozwoju druku 3D. Tegoroczne Formnext wyraźnie pokazało, że branża AM wchodzi w etap pełnej dojrzałości przemysłowej. W centrum uwagi znalazły się nie tylko nowe maszyny, lecz przede wszystkim kompletne ekosystemy produkcyjne: automatyzacja, zarządzanie proszkiem, oprogramowanie i kontrola jakości. EOS M4 ONYX jako jedna z najważniejszych premier targów Dużym zainteresowaniem cieszyła się prezentacja EOS M4 ONYX, najnowszego systemu LPBF, zaprojektowanego z myślą o produkcji seryjnej. Maszyna została zbudowana w oparciu o potrzeby przemysłu, oferując: 6 laserów 400 W pracujących w nowej, synchronicznej architekturze, pole robocze 450 × 450 × 400 mm, zautomatyzowaną wymianę płyt i szybkie przygotowanie kolejnego zlecenia (automatyczny job change < 30 minut), jednorodny, zoptymalizowany przepływ gazu, zamknięty system obsługi proszku. Chociaż firma nie koncentrowała się na określeniu M4 ONYX jako „najszybszego systemu”, podkreślano wyraźnie wzrost wydajności oraz możliwość pracy w cyklu ciągłym. To maszyna zaprojektowana do powtarzalnej, wysokowolumenowej produkcji — co potwierdza kierunek, w którym zmierza cała branża. Automatyzacja to kluczowy temat Formnext 2025 Wśród wystawców dominował jeden motyw: automatyzacja całego procesu AM. Najczęściej prezentowane rozwiązania dotyczyły: zautomatyzowanego załadunku i recyrkulacji proszków, robotycznych stanowisk odbioru i post-processingu, aktywnego monitoringu procesu w czasie rzeczywistym, systemów stabilizacji i kontroli środowiska druku. Firmy coraz częściej podkreślały, że druk 3D ma być integralną częścią zrobotyzowanych linii produkcyjnych, a nie pojedynczym etapem w cyklu wytwarzania. Software jako przewaga konkurencyjna, czyli EOS + Dyndrite Jednym z najważniejszych wątków był rozwój oprogramowania sterującego procesami LPBF. Podczas targów potwierdzono integrację oprogramowania Dyndrite LPBF Pro z architekturą EOS. Dzięki temu: możliwe jest precyzyjne, wektorowe sterowanie ścieżkami lasera, skraca się czas przygotowania ekspozycji i strategii druku, łatwiejsza staje się optymalizacja procesów na maszynach wielolaserowych. To przykład tego, jak mocno branża przesuwa się w kierunku „software-driven manufacturing”, gdzie przewaga rynkowa wynika nie tylko z samego hardware’u, ale z inteligentnego zarządzania procesem. Zastosowania praktyczne od przemysłu obronnego po infrastrukturę rozrywkową Jednym z najbardziej widocznych przykładów wykorzystania AM była duża liczba wystawców, prezentująca wydruki tłumików do broni, w pełni funkcjonalne, seryjnie wytwarzane z metalu. Nowa technologia AM pozwala w tym przypadku na realizację złożonych struktur wewnętrznych, optymalizację przepływu gazów oraz redukcję masy, przy jednoczesnym zachowaniu wysokiej powtarzalności i jakości powierzchni. To kolejny dowód na to, że druk 3D stał się standardem w wybranych segmentach przemysłu obronnego. Równie interesujące były przykłady zastosowań w przemyśle rozrywkowym i infrastrukturalnym. Na jednym ze stoisk pojawiły się drukowane elementy konstrukcyjne kolejek górskich, projektowane z myślą o ekstremalnych obciążeniach dynamicznych. Addytywna produkcja umożliwia tu integrację wielu funkcji w jednym elemencie, skrócenie łańcucha dostaw oraz szybką iterację projektów bez kosztownych form i narzędzi. Produkcja masowa – Apple Watch jako punkt odniesienia W trakcie targów wielokrotnie przywoływano przykład Apple, które oficjalnie potwierdziło, że obudowy tytanowe Apple Watch Ultra 3 oraz Series 11 Titanium są produkowane w technologii LPBF z proszku tytanowego. To jedno z największych wdrożeń addytywnej produkcji metalu w elektronice użytkowej na świecie — i jednoznaczny sygnał, że AM osiągnął poziom jakości, stabilności i skali wymagany przez najbardziej wymagających producentów produktów konsumenckich.
9 grudnia 2025
Koncern zbrojeniowy Naval Group wyprodukował śrubę napędową dla okrętu francuskiej marynarki wojennej w całości w technologii druku 3D. Firma wykorzystała w tym celu własny, specjalnie opracowany proces oparty na DED, który nazywa metal wire Fusion DED. Śruba napędowa o rozpiętości 2,5 metra i pięciu indywidualnych 200-kilogramowych łopatkach jest podobno największym tego typu silnikiem strumieniowym drukowanym w technologii 3D.
Więcej wpisów