Technologie addytywne wprowadzają innowacje do sektora obronności.

17 września 2025

W ostatnich latach wytwarzanie addytywne wyszło z roli ciekawostki w branży zbrojeniowej i stało się pragmatycznym narzędziem projektowym

oraz produkcyjnym.
 

Tłumiki (suppressors) są jednym z tych komponentów, na których szczególnie dobrze widać, jak zmiana paradygmatu - od klasycznej obróbki ubytkowej

do druku metalu - przekłada się na parametry funkcjonalne, niezawodność i łańcuch dostaw. W skrócie: druk 3D nie jest „magiczny”, ale w pewnych obszarach daje przewagę, której nie da się „odtoczyć” na tokarce.
 

Subtraktywne vs. addytywne: o co w tym naprawdę chodzi?


Tradycyjny tłumik to zestaw precyzyjnie obrabianych elementów metalowych (korpus, komory, przegrody), które następnie spawa się lub skręca. Mamy więc „rzeźbienie” z litego materiału i nieuniknioną stratę surowca na wióry. W addytywnym podejściu (np. DMLS/SLM) detal powstaje warstwa po warstwie z proszku metalicznego spiekanego/ topionego wiązką lasera. Różnica nie sprowadza się do „metody wykonania” - to inny budżet swobody projektowej: można realizować kanały, komory, perforacje i topologie, których nie da się ekonomicznie uzyskać skrawaniem. Ta swoboda wprost przekłada się na kluczowe cechy tłumika,

jak redukcja ciśnienia wstecznego, kontrola przepływu i odkształceń cieplnych.


Dlaczego druk 3D ma sens akurat w tłumikach?


Złożona geometria bez „kary” za obróbkę.

Współczesne konstrukcje korzystają z wewnętrznych struktur i kanałów kierujących strumień gazów, aby ograniczyć efekt „gas to face” i zużycie mechanizmów broni. W podejściu addytywnym takie układy powstają „przy okazji” procesu nakładania warstw, a nie serii wieloosiowych operacji skrawania i spawania. Efekt: łatwiej jest zbalansować redukcję dźwięku z niskim back-pressure i powtarzalnością punktu trafienia.

Metale trudnoskrawalne stają się „zwykłymi” proszkami.

Stopy niklu klasy superalloys (np. Haynes 282) czy Inconel, typowe dla zastosowań wysokotemperaturowych, w AM przestają być problematyczne

„dla narzędzia”. Wydajemy energię na spiekanie proszku, a nie na walkę z oporem skrawania.

To ułatwia projektowanie rozwiązań do pracy w ciężkich warunkach termicznych i dynamicznych.

Krótka pętla rozwoju.

Iteracja „model → wydruk → test → poprawka” skraca czas dojścia do optymalnego kompromisu między akustyką, ciśnieniem zwrotnym, masą i trwałością.

W praktyce umożliwia to mikro-aktualizacje projektu między seriami bez zamrażania kapitału w partiach prefabrykowanych komponentów.


 

Materiały i środowisko pracy: perspektywa „mission readiness”.
 

W ujęciu systemowym AM rozwiązuje trzy bolączki: długie czasy realizacji, wąskie gardła łańcuchów dostaw i ograniczenia geometryczne.

W obszarze obronności przekłada się to na:


Produkcję na żądanie / części powstają tam, gdzie są potrzebne

Wsparcie systemów legacy / zamienniki komponentów bez oryginalnych narzędzi

Odporność łańcucha dostaw / dzięki decentralizacji


Po stronie materiałowej standardem są stale nierdzewne (np. 316L) i stopy tytanu o wysokim stosunku wytrzymałości do masy; istotną rolę w innych klasach komponentów odgrywają również miedź i stopy Cu-Ni (zarządzanie ciepłem, odporność korozyjna).



9 grudnia 2025
Koncern zbrojeniowy Naval Group wyprodukował śrubę napędową dla okrętu francuskiej marynarki wojennej w całości w technologii druku 3D. Firma wykorzystała w tym celu własny, specjalnie opracowany proces oparty na DED, który nazywa metal wire Fusion DED. Śruba napędowa o rozpiętości 2,5 metra i pięciu indywidualnych 200-kilogramowych łopatkach jest podobno największym tego typu silnikiem strumieniowym drukowanym w technologii 3D.
12 listopada 2025
Firma EOS GmbH zaprezentowała 4 nowe proszki metalowe przeznaczone do technologii Laser Beam Powder Bed Fusion (PBF-LB) . W ofercie pojawiły się: - EOS FeNi36, - EOS NickelAlloy C22, - EOS Steel 42CrMo4 - EOS StainlessSteel 316L-4404. Każdy z nich został zoptymalizowany pod kątem wykorzystania w naszych systemach druku 3D i odpowiada na specyficzne potrzeby różnych branż - od lotnictwa, przez energetykę, po przemysł chemiczny i motoryzacyjny. Według przedstawicieli firmy, wprowadzenie nowych materiałów ma na celu dalsze poszerzenie oferty w zakresie najbardziej wymagających zastosowań przemysłowych. Nowe stopy zapewniają wysoką stabilność termiczną, odporność na korozję oraz właściwości mechaniczne, pozwalające projektować i produkować elementy o dużej precyzji i trwałości. Nowy stop żelaza z niklem EOS FeNi36 Ten stop został opracowany z myślą o zastosowaniach wymagających wyjątkowej stabilności wymiarowej w zmiennych warunkach temperaturowych. Dzięki niskiemu współczynnikowi rozszerzalności cieplnej ( <2 ppm/K w zakresie 30-150°C ), FeNi36 zapewnia nawet dziesięciokrotnie niższą rozszerzalność niż typowe stopy. Zoptymalizowany skład chemiczny i właściwości termiczne czynią FeNi36 idealnym wyborem dla branż, w których kluczowe znaczenie ma precyzja i niezawodność - takich jak lotnictwo, przemysł kosmiczny, energetyka czy obronność. 
7 listopada 2025
Nowe możliwości precyzyjnej obróbki - elektrodrążarka drutowa SC550 w naszym Centrum Badawczo-Rozwojowym AMTH Z radością informujemy o kolejnym kroku w rozwoju zaplecza technologicznego Hydropress Hydraulika Siłowa. Do parku maszynowego naszego centrum badawczo-rozwojowego AMTH w Rumi dołączyła nowoczesna elektrodrążarka drutowa SC550 , która znacząco rozszerza nasze możliwości w zakresie precyzyjnej obróbki metali. Jak działa elektrodrążarka? Obróbka elektroerozyjna, znana również jako elektrodrążenie ( EDM – Electrical Discharge Machining ), to metoda, która pozwala na precyzyjne usuwanie nadmiaru materiału przy użyciu wyładowań elektrycznych. Dzięki temu możliwe jest kształtowanie nawet najbardziej skomplikowanych elementów oraz obróbka materiałów wyjątkowo trudnych do skrawania konwencjonalnymi metodami, takich jak stal hartowana czy węgliki spiekane . Proces elektroerozyjny polega na generowaniu krótkotrwałych wyładowań elektrycznych między elektrodą a obrabianym przedmiotem. Drut jest stale chłodzony i przepłukiwany przez płyn dielektryczny (zazwyczaj woda dejonizowana). Poszczególne etapy procesu: Generowanie impulsów elektrycznych: źródło zasilania wytwarza serię impulsów elektrycznych o wysokim napięciu (rzędu kilkudziesięciu do kilkuset woltów) i niskim natężeniu (rzędu miliamperów do amperów), które są przesyłane do elektrody. Tworzenie kanału plazmowego: w momencie, gdy elektroda zbliża się do powierzchni obrabianego przedmiotu na odległość rzędu mikrometrów, dielektryk zostaje „przebity”, tworząc kanał plazmowy, przez który przepływa prąd. Wyładowanie elektryczne: prowadzi ono do gwałtownego nagrzania się i w efekcie do stopienia lokalnego obszaru obrabianego przedmiotu, temperatura w obrabianym obszarze może osiągać nawet 10 000°C. Odparowanie materiału: część stopionego materiału odparowuje, a reszta tworzy mikroskopijne cząstki, które są wypłukiwane przez dielektryk. Chłodzenie i usuwanie produktów erozji: płyn dielektryczny ma za zadanie nie tylko ochładzać strefę obróbki, usuwa też produkty erozji, dzięki czemu zapewniona jest czystość całego procesu. Kontrola pozycji i parametrów obróbki: system sterowania kontroluje precyzyjne pozycjonowanie elektrody, a także czas trwania impulsów, przerwy między nimi, natężenie i napięcie prądu. Dzięki tym złożonym mechanizmom możliwe jest osiągnięcie niezwykle wysokiej dokładności i jakości powierzchni, co czyni elektrodrążenie jedną z najdokładniejszych metod obróbki metali przewodzących prąd. Nowy wymiar precyzji Elektrodrążarka drutowa SC550 to zaawansowane urządzenie o wysokiej dokładności i powtarzalności, przeznaczone do pracy w branżach wymagających maksymalnej precyzji wykonania. Umożliwia ona tworzenie nawet najbardziej skomplikowanych kształtów, co jest dużym atutem zarówno dla branż przemysłowych. Może być też wykorzystana do wytwarzania pojedynczych designerskich produktów. Dzięki dużemu stołowi roboczemu o wymiarach 880 x 570 mm , maksymalnej wysokości cięcia 300 mm (500 mm) oraz prędkości cięcia do 250 mm²/min , urządzenie idealnie sprawdza się przy realizacji zarówno jednostkowych prototypów, jak i złożonych projektów badawczych. Zakup elektrodrążarki SC550 to kolejny, ważny etap rozwoju działalności badawczo-rozwojowej Hydropress Hydraulika Siłowa. Urządzenie doskonale uzupełnia pozostałe technologie obróbcze , pozwalając nam oferować jeszcze szerszy zakres usług, od projektowania i prototypowania, po precyzyjną realizację detali o wysokim stopniu złożoności. Dzięki nowej maszynie możemy skuteczniej wspierać naszych partnerów biznesowych w realizacji innowacyjnych projektów, zwiększając jednocześnie efektywność i jakość prac, prowadzonych przez inżynierów Działu R&D Hydropress. Korzyści dla klientów Wprowadzenie elektrodrążarki SC550 do naszego centrum to konkretne korzyści dla naszych Klientów: Większa precyzja wykonania nawet najbardziej skomplikowanych elementów. Możliwość obróbki trudnoskrawalnych materiałów , w tym stali hartowanych i węglików spiekanych. Lepsza jakość powierzchni obrabianych elementów, co często eliminuje potrzebę dodatkowej obróbki wykańczającej. Większa elastyczność projektowa – możliwość realizacji niestandardowych i prototypowych zadań. Kompleksowa obsługa – od koncepcji, przez projekt, po wykonanie gotowego detalu. Zapraszamy do współpracy i realizacji projektów, z wykorzystaniem nowej technologii EDM.
Więcej wpisów